Intellimerce ‘A

XML/A STREAM COMPRESSION — CLIENT PERSPECTIVE

By Alex Zivkovic - Intellimerce Inc. & Nikola Petrovi¢ — Morena Engineering
Published: 2004-04-28

One of the often-cited reasons for not adopting XML/A as the protocol for client/server business intelligence
communication is the fact that XML and web services are considered verbose. The payload for XML/A web
service is an XML structure. Indeed the XML structures are very liberal with use of <> and even looking at the
structures one can easily see means of compressing it. Fortunately the process of compressing and
decompressing web service calls and therefore XML/A is understood and accounted for through configuration
options of most web servers. Both Apache and IIS 6.0 have capabilities that provide for compression of http
streams and consequently the web services and XML/A that might sit on top of it. In this paper we describe how
one can write a client that consumes the said compressed XML/A stream that originates on Microsoft XML/A
SDK sitting on top of an 1IS 6.0 server. While we discuss the XML/A compression specifically the same
methodology can be used for any web service that is configured for compression and the code is not specific to
XML/A.

What Is HTTP Compression?

HTTP Compression is process where the http stream served from the Web server is compressed on the server
side and decompressed on client side. Web server does not blindly compress the stream Instead it checks to
see if the consumer (client application or browser) is able to process a compressed response. Compression
enabled consumers add special "Accept-Encoding" header in the request. If the compression is enabled the
web server serves a compressed version of the registered type of files for compression.

For static content the server checks to see if the compressed file exists in a temporary compressed cache and
serves it from there or if it is the first time that the file is being served compresses it, serves it and stores it in the
cache. For dynamic content such as asp.net forms the server simply compresses the response and sends it to
the requestor.

Compressing XML/A SDK Response on IIS

One of the improvements in IIS 6.0 is excellent compression implementation, so there's no need any more for
third-party compression add-ins.

To compress the response from Microsoft XML/A SDK one simply needs to configure the 1I1S 6.0 virtual
directory (typically called xmla) that contains the msxisapi.dll. To enable HTTP compression on your Windows
2003 Server just follow the step by step examples provided in following excellent article by Donnie Mack:

http://www.dotnetjunkies.com/HowTo/16267D49-4C6E-4063-AB12-853761D31E66.dcik

Page 1 of 1
Intellimerce Inc.
439 King St. West, 4™ Floor
Toronto, Ontario, M5V1K4
Tel.416.644.8755 Fax.416.644.8801
http://www.intellimerce.com




Intellimerce g

Decompressing XML/A SDK Response in Client Code

Modern browsers, like IE and Netscape, automatically send compression request header, recognize the
compressed streams and apply the appropriate decompression using the built-in compression libraries.
However, if web service consumer is not a browser but your .Net code, dealing with compression on client side
is your responsibility. In this section we describe how the decompression is achieved using the open source
(LGPL) ICSharpCode Zip library (http://www.ICSharpCode.com/Zip) and .net.

Requesting compression

In order for the server to know that we are requesting the compressed stream we must modify the http request
by adding the notification for compressed encoding. The cleanest cut point for modifying the http request when
calling a SOAP service in .net is in the References.cs file that you will find hides behind the

Web Services/XMLAInterface/References.map (assuming that you have named your import of XML/A
wsdl as XMLAInterface). Note that this file gets regenerated whenever you import a web service so make sure
that your changes are stored safely so that you can reapply them if there is a change to the WSDL for the
service that you are calling.

The first step is to modify the GetWebRequest function for compressed case. Here is the code that performs
this function:

protected override System.Net.WebRequest GetWebRequest (System.Uri uri)
{
System.Net.WebRequest request = base.GetWebRequest (uri);
if (wantCompression)
request.Headers.Add ("Accept-Encoding", "gzip");
return request;

}

As you can see for the compressed case (replace wantCompression with your variable) we add the header with
the indication that we accept “gzip” encoding. Now the web server will know that we can process compressed
web service streams.

Processing the compressed response

In order to process the compressed web response from the web service we modified the References.cs
GetWebResponse method as shown:

protected override System.Net.WebResponse GetWebResponse (System.Net.WebRequest request)
{
HttpWebResponseDecompressed response = new HttpWebResponseDecompressed (request);
return response;

}

All the magic occurs in the HttpWebResponseDecompressed class which is described next.
HttpWebResponseDecompressed Class

Here is the code for the HttpWebResponseDecompressed class (adaptation of Jacek Chmiel code
http://www.dotnetjunkies.com/Tutorial/90D3B3E0-6544-4594-B3BA-E41D8F 381324 .dcik):

Page 2 of 2
Intellimerce Inc.
439 King St. West, 4™ Floor
Toronto, Ontario, M5V1K4
Tel.416.644.8755 Fax.416.644.8801
http://www.intellimerce.com




Intellimerce o

using System;

using System.IO;

using System.Net;

using ICSharpCode.SharpZipLib.GZip;

namespace SnowflakeNS
{
internal class HttpWebResponseDecompressed:WebResponse {
private System.Net.HttpWebResponse response;
public HttpWebResponseDecompressed (WebRequest request) {
response= (HttpWebResponse) request .GetResponse () ;
}
public override Stream GetResponseStream() {
Stream compressedStream = null;
if (response.ContentEncoding=="gzip") {
compressedStream = new
GZipInputStream(response.GetResponseStream()) ;
}
else if (response.ContentEncoding=="deflate") {
}
if (compressedStream != null) {
// decompress
MemoryStream decompressedStream = new MemoryStream();

int totalSize=0;
int size = 2048;
byte[] writeData = new byte[2048];
while (true) {
size = compressedStream.Read(writeData, 0, size);
totalSize+=size;
if (size > 0) {
decompressedStream.Write (writeData, 0, size);
}
else {
break;
}
}
decompressedStream.Seek (0, SeekOrigin.Begin);
response.Close();// Jacek, you have missed this line
return decompressedStream;

else
return response.GetResponseStream();

public override long ContentLength {
get{return response.ContentLength;}

public override string ContentType {
get {return response.ContentType;}

public override System.Net.WebHeaderCollection Headers({
get {return response.Headers;}

public override System.Uri ResponseUri{
get{return response.ResponseUri;}

Page 3 of 3
Intellimerce Inc.
439 King St. West, 4™ Floor
Toronto, Ontario, M5V1K4
Tel.416.644.8755 Fax.416.644.8801
http://www.intellimerce.com




Intell.merce S

The constructor does nothing more than call the GetResponseStream

public HttpWebResponseDecompressed (WebRequest request) {
response= (HttpWebResponse) request .GetResponse () ;

}

All the heavy lifting is really done by the ICSharpCode SharpZipLib library. At this point we really must thank the
guys from ICSharpCode for a wonderful open source LGPL library. For more details visit their site at
http://www.icshaprcode.net.

So lets look at the GetResponseStream() few line at a time. First we check to see if we have to do any
processing at all:

Stream compressedStream = null;
if (response.ContentEncoding=="gzip") {
compressedStream = new
GZipInputStream(response.GetResponseStream()) ;
}
else if (response.ContentEncoding=="deflate") {

}

If you remember we have set the ContentEncoding by requesting the gzip encoding in our request. The server
returns this type of encoding in the response. If the encoding is gzip we create a GziplnputStream from the
response stream otherwise we do nothing. The rest of the code is skipped if the encoding is not set.

So here comes the decompression part:

if (compressedStream != null) {
// decompress
MemoryStream decompressedStream = new MemoryStream();

int totalSize=0;
int size = 2048;
byte[] writeData = new byte[2048];
while (true) {
size = compressedStream.Read (writeData, 0, size);
totalSizet+=size;
if (size > 0) {
decompressedStream.Write (writeData, 0, size);
}
else {
break;
}
}
decompressedStream. Seek (0, SeekOrigin.Begin);
response.Close();
return decompressedStream;
}
else
return response.GetResponseStream() ;

This is the regular code that you would write for decompressing any gzip stream. If we don’t have to
decompress we just return the original stream.

The rest of the functions are just accessors.

Page 4 of 4
Intellimerce Inc.
439 King St. West, 4™ Floor
Toronto, Ontario, M5V1K4
Tel.416.644.8755 Fax.416.644.8801
http://www.intellimerce.com




Intelli o
nLelimerce I
Compression Results

With all this work it is interesting to see what are the results of the compression are. To that effect we have run
various EXECUTE and DISCOVER methods with different size of responses. Here are the charts showing that

the compression effectiveness grows to an enviable 93 and 95 % respectively for responses.

Compression Test — Execute Method

XMLA Response Size [kB]

Without : Compression 100%
compression Compressed Difference .
o a5
B0%
7.70 1.51 6.20 80.46%
B5% -
0, =
16.71 2.58 14.13 84.56% 5
27.44 3.56 23.87 87.01% E 759,
59.20 6.53 52.67 88.96% E’ 70%
L
98.47 9.88 88.58 89.96% B3%
171.40 15.55 155.85 90.93% B0%
5,
280.28 20.94 259.33 92.53%
SD% T T T T T T T T T T T T T T
401.76 27.13 374.63 93.25% O — W O O @@ — o= oo e
e T e T A e B B = = B
776.41 47.83 728.58 93.84% mEREEEECcEREEZTIZE
FN‘d'rH-DJ-t—_LD_LD_N_LD_‘d'_
823.92 55.22 768.70 93.30% T oo s ma
AMLA Response Size [kB]
1,155.61 75.65 | 1,079.97 93.45%
2,665.32 187.74 | 2,477.58 92.96%
4,614.12 314.64 | 4,299.48 93.18%
5,224.94 400.03 | 4,824.91 92.34%
6,510.16 47323 | 6,036.93 92.73%
7,420.87 553.93 | 6,866.94 92.54%
Page 5 of 5

Intellimerce Inc.

439 King St. West, 4™ Floor
Toronto, Ontario, M5V1K4
Tel.416.644.8755 Fax.416.644.8801
http://www.intellimerce.com




Intellimerce

Compression Test — Discover Method
XMLA Response Size [kB]

Without Compression

Compressed | Difference

compression rate

caniill --..
A -

2.01 0.75 1.26 62.74%
3.71 1.08 2.63 70.88%
10.55 1.29 9.26 87.82%
20.43 1.54 18.89 92.47%
45.24 2.44 42.80 94.60%
49.78 2.92 46.86 94.14%
94.93 4.74 90.18 95.00%)
476.59 15.83 460.76 96.68%
1,538.31 59.21 1,479.10 96.15%
3,5638.31 141.13 3,397.18 96.01%
11,391.75 551.74 | 10,840.01 95.16%

Intellimerce Inc.

439 King St. West, 4™ Floor
Toronto, Ontario, M5V1K4
Tel.416.644.8755 Fax.416.644.8801
http://www.intellimerce.com

Page 6 of 6



e

Intellimerce e

That’s All Folks

That is all there is to it. In a few lines of code and with the 1IS or Apache compressed configuration you can
greatly reduce network bandwidth for XML/A. Note that this methodology is not specific to XML/A. You can do
this for any web service that is running on top of http compression. The compression levels for XML/A are
staggering: in most cases 90% and higher yet the server overhead is low thanks to efficient compression
libraries. For heavy-loaded servers you can consider a fast CPU or a web farm. In addition one should not
forget that there is a processing overhead on both sides — web service (compression) and web service
consumer (decompression). You could modify this example to access the built-in windows gzip library if you
know that such is available i.e. assuming that you are running on a Windows server. (note: alternative might be
mono project running .net on linux)

Page 7 of 7
Intellimerce Inc.
439 King St. West, 4™ Floor
Toronto, Ontario, M5V1K4
Tel.416.644.8755 Fax.416.644.8801
http://www.intellimerce.com




